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Abstrad-The phenomenological constitutive equation given below, for uniaxial steady state creep, i.e.
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oe-""kT sinh K2(u-uo)
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has been derived from first principles and applied to AISI316 stainless steel, pure polycrystalline aluminum
and copper. A single micromechanism has been found sufficient to predict the data throughout the entire
test temperature and stress range.

The equation above has an intrinsically atomic basis as it has been obtained through the notion of
intermal variables in the context of the absolute reaction theory of Eyring. The physical meaning of the
internal variables and the foundation of their associated evolution equations are established clearly in terms
of averages of atomic motions over the energy barriers, under application of an external stress field. It is
this concept that gives one hope that a sound thermodynamic and physical foundation of irreversible
thermodynamics with internal variables has been found from microscopic considerations.

I. INTRODUCTION
Various theories of steady-state creep have been proposed in the literature in recent times.
Four main approaches are worthy of mention: (a) that in which the creep process is presumed
to depend on micromechanisms, such as vacancy diffusion, dislocation climb and microcreep in
pure metals, dispersion-hardened alloys and solid solution alloys[1-3]; (b) that in which the
main object is the analytical representation of available data leading to empirical formulae, such
as the power law at low stress, the exponential law at high stress [4J, or the hyperbolic sine
law [5,6]; (c) that in which analytical constitutive theories, derived from functional mathemati­
cal theories of visco-elasticity, are used as a basis for the analytical representation of the
data[7]; (d) that in which phenomenological theories depend on a liaison between theories of
micromechanisms and theories of continuum mechanics, such as the state variable theory
proposed by Hart [8, 9], the reaction-rate theory proposed by Kanter, Kauzmann and Eyring[lO]
and the internal variable theory in conjunction with the absolute reaction rate theory proposed
by Valanis[11J and Lalwani.

In this paper, the internal variable theory in the context of the absolutre reaction
theory[ll, 12] is extended and applied to the prediction of the effect of temperature and stress
on the steady-state creep rate of metals. In the above theory, there are two fundamental
postulates. The first lays the phenomenological foundations by stipulating that the Helmholtz
free energy of a dissipative material system undergoing irreversible process is a state function
of deformation, temperature and a set of internal variables [l3J which are deemed necessary for
the description of the inelastic behavior of a material undergoing a deformation process. The
second establishes the atomic basis of the theory, according to which the inelastic strain is the
result of a change in atomic configuration brought about by atoms crossing energy barriers.

The fundamental mechanisms of deformation proposed in theories of vacancy diffusion,
dislocation climb, grain boundary glide, etc. are actually atomic motions in specific configura­
tional conformations. In order to make possible an engineering analysis in terms of "defor­
mation kinetics" at the atomic level, the theory presented here makes two stipulations and one
hypothesis all of which are stated below:

(1) Creep is the result of diffusion of atoms over potential barriers. The height distribution
of these barriers depends on the atomic arrangement in the material in question;

(2) The rate of change of an internal variable is equal to the average velocity of a group of
atoms whose motion is impeded by an energy barrier of a specific height;
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(3) The gradient of the Helmholtz free energy with respect to an internal variable acts as an
internal force on the group of atoms associated with that variable.

The result theory and the ensuing analysis avoid some of the complexities that one finds in
other theories of micromechanisms. It also leads to a phenomenological constitutive equation
with an intrinsically atomic basis.

2. ANALYSIS

In phenomenological experiments one aims at obtaining laws of mechanical behavior of the
materials in terms of a relation between stress, on one hand and strain, strain rate, etc. on the
other. This approach is pureI.y global and does not address itself to the micromechanisms in
the material that contribute to the overall motion, though local micromotions. In this paper we
present a theory in which we identify these micromotions as internal variables and propose
laws that govern their evolution. A precise analysis of this point of view is presented in the
remainder of this section.

The theory is presented in detail in Ref. [II]. Here we shall recount its essential points for the
purposes of analysis.

In general, metals may contain a large number of point defects, dislocations, impurities,
grain boundaries, etc. An atom in an environment of a disordered atomic structure, faces
potential barriers of different shapes and heights. An atom will surpass a barrier in its path if
and only if its energy is higher than the height of the barrier. When the reference state is stable,
a large majority of atoms would be expected to be found oscillating in wells formed by the
energy barriers. Some atoms may gain enough energy during their oscillations in the valleys and
cross over the barriers. In order to ensure that the system is stable initially, it is sufficient to
assume that the barriers are symmetric. This assumption will lead to an initially dynamic
equilibrium in the system and will ensure that no net atomic motion in any particular direction
will take place. The material is thus non-aging.

Following the point of view expressed in Ref. [11], we stipulate that the rate change of an
internal variable is the average velocity of a group of atoms whose motion is impeded by
a potential barrier of a specific height.

An internal variable q, is then the statistical average of the displacements of a group of
atoms r, whose motion is impeded by barriers whose heights are all the same and equal to Eo'.

Certainly there may exist numerous but finite physically different potential barriers in the
system. Thus a finite (yet possibly very large) set of internal variables corresponding to a finite
number of barriers is needed to describe the material behavior in detail, by the scheme of
thermodynamics of internal variables. In addition, it is quite natural that each internal variable
has its own evolution equation pertinent to the deformation kinetics that apply at the atomic
level. Thus a set of evolution equations corresponding to the set of the internal variables is
expected at the phenomenological level at which the material behavior is to be given
mathematical constitutive representation. For brevity only one typical internal variable and its
associated evolution equation is analyzed here. Other internal variables and their associated
evolution equations can be treated analogously in a fashion similar to the one presented in the
text.

2.1 Net number of atoms crossing a barrier
The morphology of the potential surface of an atomic configuration is likely, in general, to

be extremely complex. For the purposes of analysis the barriers are ordered according to their
heights as follows:

EI < E2 ••• < Ey ••• < En-I < En'

If for every barrier height Ey there exist a number 'Y of atomic barriers, then it is possible to
treat the motion of the group of atoms 'Y statisticallY. To avoid difficulties which arise in cases
where 'Y is small, we shall deal with statistical averages in terms of an ensemble and in what
follows we shall be dealing strictly with ensemble averages.

Consider Ny atoms in the ensemble facing a potential barrier of the height EOY' The
fundamental hypothesis of irreversible thermodynamics in the context of the absolute reaction
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rate theory [11] is that the potential energy surface, in the vicinity of the atoms associated with
the internal variable q.... suffers a local tilt w')' as a result of the application of the stress field u.
The local tilt w')' is assumed to be linearly related to the internal thermodynamic force
- (aI/J/aq')') acting on the group of atoms y, where 1/1 is the Helmholtz free energy. This has the
effect that the height of the front barrier is decreased by w')' while height of the rear barrier is
increased by the same amount. Following Ref. [11], the net number N~ of atoms that partake in
the forward motion is then that number of atoms whose energies Ej are greater than Eo')' - w')' but
less than EO')' +w,..

In terms of Boltzmann statistics the probability of an atom being in an energy state Ej is
a e-Ihi where a is the inverse of the sum over all energy states, (J is the inverse of kT, k is the
Boltzmann constant and T the absolute temperature. Thus

E/<EO"+Ct1y

N~=aN')' ~ e-fJE1
•

Ei>EO -Cd."

This expression maybe written in the form

(2.1)

(2.2)

Since in eqn (2.2) we are summing essentially over energies associated with the well, i.e.
energies that are lower than the pertinent barrier height, we may with good approximation
regard these as approximating those of a linear harmonic oscillator in which case

(2.3)

where II')' is the characteristic frequency associated with the well in question. Substitution of
eqn (2.3) in eqn (2.2) yields the result

(2.4)

In view of the assumed linearity between w')' and al/llaq')' we propose the relation

(2.5)

where the "internal force" Oy is defined as 0')' == -(al/llaq')') and 0')'° is some threshold value of
0')' below which w')' = O. In general the coefficient of tilt C')' will be a function of temperature.

With reference to the first author's previous paper [11], if T')' is the "average time" for the
group of atoms to tranverse the distance a')' across a barrier, then the average velocity tl')' of the
atoms in the forward direction is given by eqn (2.6), i.e.

(2.6)

In Ref. [11] Valanis and Lalwani assumed that T')' is independent of w')' as a first approximation.
The following quantitative analysis, however, reveals that T')' may be expressed more exactly as
a function of w,.. With reference to Fig. I, let h(x) be the height of the barrier at a distance x
from the lowest point in the well, such that,

(2.7)

Consider an atom which is a candidate for going over the barrier on the right. This is an
atom which prior to the application of the stress field was at an energy level Ej (where i stands
for "initial") such that

(2.8)
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Fig. I. Potential surface before stress field was applied.

Form considerations of energy conservation

h(x)+!V2=E;

where V is the velocity of an atom at position x. Thus

It follows that the time 1'; to cross the barrier is given by eqn (2.11), i.e.

(2.9)

(2.10)

(2.11)

In order to evaluate the integral on the r.h.s. of (2.11), we seek a convenient analytical
expression for hex). We choose

(2.12)

Upon substitution of eqn (2.12) in eqn (2.11), 1'; is found in terms of the complete elliptic
integral F as shown in eqn (2.13).

where

- 2a)l F (1f . -I k )
1'; - 1fV(2E;) "2' SID ;

(2.13)

(2.14)

Equation (2.6) is derived' on the basis of the following consideration. Omitting the subcript "y"
for the purposes of facilitating the notation

£O+(d

~ N;v;
q = .....o--=;..:-=-_

Ny
(2.15a)
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where Vj is the average velocity of atom with energyt €.. Evidently

a
Vj=-.

1'j

Hence:

·0+" N'aL -l
q= !A-" 1'j

N.,

For sufficiently small w one can write as a first approximation;

·0+" N ~ 1·0+"
L-I=-LNi
00-" 1'j 1'000-..

where 1'0 = 'TI./=.o' Thus restoring the subscript "r" and as a result of eqn (2.15a)

'-~
q- "N''To .,
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(2.15b)

(2.15c)

(2.15d)

(2.16)

We mention that in eqn (2.6) T., has been equated approximately to 'To'Y. It follows therefore from
eqn (2.13) that

(2.17)

where

(2.18)

Now using eqns (2.17), (2.6) and (2.4) we arrive at an important relation which links the time
rate of change of q'Y to the potential distortion Wr Specifically,

(2.19)

To obtain an equation for the evolution of the internal variable q.,. we recall our earlier
assumption according to which W'Y is linearly related to al/Jlaqr Recalling eqn (2.5) and
substituting for W'Y in eqn (2.19) we obtain the required eqn (2.20), i.e.

subject to the constraint

. = y'(2)1Ty'(eo") -/hoY • he (Q _ Q 0)q., F e sm ., l' 'Y (2.20)

q'Y=O, (2.20a)

The appearance of Q1'0 has a sound physical explanation. It is well known that metals
behave substantially elastically, below a stress level which is known as the yield stress. We

tThe limits of the sum in the numerator are consistent with the fact that only atoms in the indicated range partake in the
forward motion.

tHere we are essentiaUy applying the mean value theorem to the sum.
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expect therefore that no creep will take place unless the applied stress exceeds the yield stress
at a particular temperature.

In eqn (2.20) Q.,o has the meaning of an internal yield "stress" (force)t since no micromotion
q., can take place unless the magnitude IQ.,I of the internal force exceeds Q.,o.

The limiting form of F. It is shown in Fig. 2 that for 0:5 (W.,/Eo"):5 0.35, the function F can
be approximated quite adequately by the relation (2.21), i.e.

1 (16EQ'Y)F=-Iog - .
2 wy

(2.21)

The maximum error being less than 5%. Equation (2.20) may now be expressed in terms of
standard functions.

2.2 Relation between stress and steady rate of creep
Following the application of stress, the creep process begins at its fastest rate and proceeds

at a progressively slower rate until a constant creep rate (secondary creep) is achieved. The
transition to tertiary creep and the circumstances surrounding the later will not be discussed
here. In so far as creep in metals is the result of diffusion-by correlated atomic motion,
interstial diffusion, vacancy diffusion or relaxation diffusion (motion by local atomic arrange­
ment)-the characteristic shape of a creep curve suggests that initially high rate of creep must
be associated with diffusion of atoms over low potential barriers. In their subsequent travel
these atoms must by shear chance alone be progressively trapped in behind high barriers. So
that particles that are available to diffuse over low barriers become less and less numerous.
Furthermore trapped particles become obstacles to motion of mobile particles thereby increas­
ing the population of high barriers. The implication is that ")ong term" (secondary creep)
consists, essentially, of atoms climbing over the higher barriers.

It would appear therefore and it will be vindicated experimentally, that one internal variable
corresponding to such high barriers will suffice to describe the process of deformation
associated with steady state creep.

F<Y.aO}
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Fig. 2. The complete elliptic integral.

tPhysical concepts in this vein are already present in the literature. For instance Ashby in his construction of "deformation
maps" admits stress thresholds below which DO creep can OCCIII' as a result of the particular micromecbanism dominant in a
particular region of the homologous temperature-stress diagram. See Ref, [20]. Regions inwhich DO creep can OCCIII' are called
elastic regions.
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With the above in mind and for the purposes of steady state creep we write the free energy
density'" in the form

l{1= "'(E, q, T) (T = const). (2.22)

The form of the function'" merits discussion. We recall that the free energy is the mechani­
cally stored (or recoverable) energy present in a thermodynamic system at any particular time.
Energy is stored through mean displacement of atoms from their positions at the bottom of
potential wells. To a good approximation the shape of a well may be regarded as parabolic for,
its most part, leading to the model of linear harmonic oscillator. If an atom goes over a barrier
its energy is no longer stored but is dissipated and thus it cannot contribute to the stored
energy. Thus the free energy is the potential energy stored by virtue of atoms being displaced
within potential well. The mean displacement generated as a result is directly related to the
elastic strain. For instance in the case of a unidirectional equispaced atoms the elastic strain
is exactly equal to the atomic displacement divided by the lattice spacing. Assuming parabolic
wells, the potential energy is proportional to a quadratic function of the displacement, leading
to the conclusion that the free energy is a quadratic function of the elastic strain.t

To relate the above discussion to eqn (2.22) we write l{1 in the quadratic form

(2.23)

and insist that it is a perfect square, so that the squared linear term can then be identified with
the elastic strain. This is possible if

(2.24)

in which case eqn (2.23) becomes

(2.25)

where A == All and B == - (AulA). Thus since eqn (2.25) is the mathematization of the statement
at the end of the last paragraph E - Bq must be identified as an elastic strain. Note that A
and B may be and are, in general, functions of temperature.

To obtain the desired analytical expression for creep we appear to a fundamental relation of
irreversible thermodynamics according to which the stress is the gradient of free energy with
respect to the strain, i.e.

Thus, as a result of eqns (2.25) and (2.26)

(2.26)

u=A(E-Bq). (2.27)

We also note at this juncture that 0""oq which is essential in the determination of q-see eqn
(2.20)-is given by eqn (2.28):

~= - AB(E- Bq)
oq

or

tFor a discussion see Appendix.

~=-BU. (2.28)
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Equation (2.28) in conjunction with eqn (2.20) yields a relation between q and (1. The fact that
during creep the stress is a constant, following the instant of its application, leads to a relation
between the strain rate and q. Specifically, as a result of eqn (2.27)

i=Bq (2.29)

upon substitution of eqns (2.28) and (2.29) in eqn (2.20) one obtained the following explicit
relation between the creep rate and its stress:

(2.30)

where

(2.31)

and

(2.32)

Perusal of eqn (2.30) shows that (10 has the significance of a "threshold stress" below which
the rate of secondary creep is zero. Experimental results give a strong indication of the
existence of such a threshold (at least in an approximate sense). We have found that in the case
of steel (AISI3I6 stainless steel) (10 is substantially independent of temperature. However, in
the case of pure polycrystalline copper and aluminum (10 depends on temperature quite
sensibley.

3. USE OF EQUATION (2.30) TO PREDICT SECONDARY CREEP

For the purposes of a discussion we write eqn (2.30) in the form

i = ~«(1, T)e-to/kT (3.1)

where

~«(1, T)
K\o sinh K2«(1 - (10) (3.2)

I I6Eo K )og kT -log 2«(1-(10

and

K\o =2y'(2Eo)1rB. (3.3)

We note from the above equations that the dependence of Eon (1 and T is determined in terms
of the parameters Eo, (10, K\o and K2• To determine these parameters we use arguments based
on the following physical considerations.

We presume that, since an increase in temperature .increases the amplitude of oscillation of
atoms about their mean position, only the mean kinetic energy is affected by a temperature
change but not the potential surface configuration. Thus Eo is insensitive to temperature and is
essentially constant. Perusal of the experimental data-AISI 316 stainless steel, pure poly­
crystalline aluminum and copper on the plot of (1 vs log\o E, as shown in Figs. 3, 7 and
II-indicates that, under constant T, the data points converge asymptotically to a stress value
(10 as E~O. In general (10 is substantially constant or a sensitive function of T as the case may
be. In addition, eqn (3.2) under constant T is dominated by sinh K2«(1 - (10) when K2«(1 - (10) is
high. As a result, at high stresses Eis proportional to eK 2(u-uo) and the plot of (1 vs 101\0 Ewill be
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almost a straight line. This trend is confirmed by the Figs. 3, 7 and 11. Thus K2 can be found by
the relation

(3.4)

In fact K 2 is a function of T.
To determine Eo we are guided by the previous technical literature. The general practice has

been to plot log\o Evs 1/T at constant stress. In the case of common metals this "plot" is to a
first approximation, a straight line. The implication is that in the temperature range of the test
log\o ~ is a weak function of temperature and as a result Eo may be obtained from the measured
slope of the straight line. The expectation that Eo is independent of stress should lead to parallel
straight lines, each corresponding to a different, constant stress level. This observation enabled
us to determine a first (approximate) value of Eo. Using the values of Uo, Eo and K2, eqn (3.1)
can be readily applied and K\o can be determined by the best fit of the theory to the
experimental data. This procedure worked welled for steel and aluminum but a different
approach had to be employed in the case of copper.

3.1 Application to AISI 316 stainless steel
Figures 3 and 4 are experimental data from Ref. [15]. From Fig. 3, the value of Uo is

observed to be a constant, i.e. 2ksi (140.6 kg/cm2
). The function K 2(T) was found by use of eqn

(3.4) and is shown in Fig. 5. The values of K 2(T) over the indicated temperature range show
K 2(T) to be a fairly slowly varying function of T. In Fig. 4, we let a straight line pass through
the data points and find Eo to be equal to 73.7 kcal/mole.t This is very close to the value of the
"activation energy" in Ref. [15]. The values of K\O(n then found by using eqn (3.1) and are
shown in Fig. 6. This figure shows that K 10 is a slowly varying function of T. Thus log\o ~ is
also a slowly varying function of T due to the slowly varying nature of K\o(n and K 2(n. This
shows that eqn (3.1) approximates an Arrhenius type relation as shown in Fig. 4, within the
tolerance of experimental scatter.

The theoretical predictions are in good agreement with the experimental data as shown in
Fig. 3.
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Fig. 3. AlSI 316 stainless steel.

tAccording to Refs. [4, IS], this value is in good agreement with the activation energy for self diffusion in .f"-iron which
is the major constituent of AlSI 316 stainless steel in the test temperature range.
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Fig. 6. AlSI 316 stainless steel.
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3.2 Application to pure polycrystalline aluminum
Figures 7 and 8 are experimental data from Ref. [16]. From Fig. 7, one concludes that 0'0 is a

function of T shown in Fig. 9. The function K2 given by eqn (3.4), is also a function of T as
shown in Fig. 9. In Fig. 8 plots are shown of log evs 1()l/T at different constant stress levels.
Though the number of points in the plots is small (two or three), they serve to establish
approximate linear relations. We expect then that log\o ~ (within these temperature ranges) will
be a slowly varying function of T and, indeed, this is true as shown in Fig. 8. the value of Eo is
found to be equal to 34 kcal/molet which is the same value as the activation energy in Ref.
[16]. The function Klo(T) is then found by using eqn (3.1) and the result shown in Fi8. 10.
With the functions 0'0, K lo and K2 so found the dependence of loglo ~ on T is now calculated
throughout the range of the test temperature. As seen in Fig. 8 a strong dependence of log\o~
on T is indicated outside the temperature range of the experiment.

This accounts for the fact that when workers use an Arrhenius plot-thus assuming that
loglo ~ is constant-they find activation energies that are stress dependent. However we find
that this is not the case when loglo ~ is expressed properly as a function of T.

The resulting theoretical predictions are in good agreement with the experimental data as
shown in Fig. 7.

3.3 Application to pure polycrystalline copper
In Figs. 11 and 12 we present experimental data from Ref. [17]. From Fig. 11, we deduce

that 0'0 is a function of T as shown in Fig. 13. The value of K2 is also found by the procedure
previously discussed and is shown in Fig. 13. Only two to four data points under constant stress
are shown in Fig. 12. Obviously these points can not be connected by parallel straight lines as
was previously the case.

However, the experience accumulated from the previous cases lead to the following
observations. Equation (3.1), under given 0'0 and K2, depends on KI (= Kl

oe-eoIkT
) but not on Eo

alone. The effect of changing Eo in eqn (3.1) is always offset by a corresponding change in K IO.

As a result the theoretical curves predicted by eqn (3.1) on a plot of loglo e vs liT are not
sensitive to the change of Eo. In addition, under conditions of high-temperature creep, Eo is in
good agreement with the activation energy of self diffusion in pure metals or of the major
constituent in solid solutions alloys. The same conclusion may be drawn from Dorn's
observations [4]. As a result, EO is set equal to 49 kcal/mole which is the activation energy of self

PURE POLYCRYSTALLINE ALUMINUM
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3
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10-' 10" 10" 10-3 10'" 10" 10° 10'
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Fig. 7. Pure polycryslalline aluminum.

tAccording to Refs. [4, 16}, this value is in good agreement with the activation energy for self dilrusion in aluminum.
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Fig. 10. Pure polycrystalline aluminum.
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Fig. 11. Pure polycrystalline copper.
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diffusion in copper. The value of EO determined here is different from those temperature
dependent values of activation energy, determined in Refs. [17,19].

The function KtO(D is then determined from eqn (3.1) and is shown in Fig. 14. We show in
Fig. 12 that 10glO;' is a strong function of T due to the dependence of uo, Kloand K2 on T.

The theoretical predictions are in good agreement with experimental data as shown in Fig.
11.

4. CONCLUSIONS

A phenomenological constitutive equation has been derived on the basis of considerations at
the atomic scale using deformation kinetics and irreversible thermodynamics of internal
variables. The physical meaning of the internal variables and the foundation of their associated
evolution equations have been determined very clearly in terms of the motion of atoms crossing
potential energy barriers, distorted by the presence of local internal forces.
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The theory is in good agreement with experimental observation of steady-state creep in
metals such as AISI 316 stainless steel, pure polycrystalline aluminum and copper. A single
micromechanism (Le. one internal variable) is found sufficient to predict the data in the entire
range of temperature of the tests.

It is expected that the theory, developed herein, will have wide applicability owing to its
basic nature. The thermodynamic and physical foundations upon which this theory is based
make it suitable for the study of general thermodynamic deformation processes in other
materials.
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APPENDIX
Quadratic function in f and q of the free energy has been discussed in the literature extensively (see for instance

Meixner and Reik[21], Biot[22], Schapery[23], Valanis[l3], Kestin[24] et 01.). These functions satisfy the principle of
thermodynamic stability as discussed by the above authors provided that certain constraints are imposed to insure
ellipticity of the function in the sense that the free energy is positive definite.

With reference to eqn (2.23) the constraints are

(Ala,b,c)

The constraint (Ale) is somewhat too stringent in that it excludes the possibility of (Ale) be an equality. This is a
physically admissible possibility and pertains, in the case of viscoelasticity, to simple models such as the Maxwell model,
which exhibits a fluid equilibrium configuration.

In this paper we admit the possibility of (Ale) being an equality. We note in passing that if this were not so, steady state
creep would not be possible.


